
 nsed inmediately in the next remetim, Brombe :minys.
pombls 13 and 14 were obonined is the hydrochluride directly from the chilled noid sulntions and did not require recrystalliza(ion).

3,4-Dihydro-6,7-dihydroxycoumarin (3,4-Dihydroesculetin).

To: suspension of 100 mg of Pt()$_{2}$ in 10 ml of absolute ethanol wis added 691 mg (3.98 moloter) of exculetio. The mixture was hydrogenated at roonu tempernate ($\underline{2}^{\circ}$) and atmospherin presstire, (aking (t) 1 e(binv of hydrogen in 4 br. The gatalys was

 B6.N: H. 4.49.

Acknowledgment. This work was supported by

Pyrazine Diuretics. II.

N-Amidino-3-amino-5-substituted 6-Halopyrazinecarboxamides

Fidward J. Cragoe, Jr., Otto W. Womersdorf, Jh., Johi B. Bicking, Sara F. Fiwong, ind Jame h. Joxe

Recried July 1\%. libet

Abstract

 rats :nd dogs, these compounds canse dinresis and sahmesis while potassim excretion is maffected or represed. substitnted ammo were prepared. The latiter two typer embrace compumus with the highest activity. soveral routes for the syuthesis of methyl :3-imino-5, 6 -dichloropyrazinome, a key intermedinde, are presented.

The unique effect of the N-amidino-3-amino-6-halopyrazinecarboxamides ${ }^{1}$ on renal electrolyte excretion prompted a thorough structure-activity study of this series and its congeners. It is the purpose of this paper to report the investigation of N^{2}-amidino-3-amino-6-halopyrazinecarboxamides (II) bearing various substituents at the $\overline{5}$ position and on one nitrogen of the amidino group.

Chemistry.--In general, the target compounds (II) were prepared by the interaction of the appropriate

[^0]
ester (I) with a guanidine. The reaction was usually earried ont by heating the ester with a methanolic solntion of the guanidine Siatisfactory results were : chioved with guanidine itself :um a variety of esterw in-
cluding those where the 5 substituent, Y , is amino, substituted amino, hydroxy, alkoxy, mercapto, or methylmercapto and where the 6 substituent, X, is chloro or hydrogen.

N-Substituted amidinopyrazinecarboxamides were prepared by the reaction of a number of mono- and 1,1disubstituted guanidines with a few selected esters. Theoretically, a monosubstituted guanidine (e.g., methylguanidine) could give rise to either or both of two isomeric products: (a) II (where $\mathrm{R}^{3}=\mathrm{H}$ and $\mathrm{R}^{4}=$ CH_{3}) or (b) the isomer in which the acyl and methyl groups are attached to the same nitrogen atom. That the former structure (a) is the more likely one is based on the following arguments: (1) an unequivocal synthesis of \bar{N}-(methylamidino) benzamide has been reported ${ }^{2}$ and it has been shown to be identical with the compound prepared from methylguanidine and ethyl benzoate ${ }^{3}$ or benzoyl chloride; ${ }^{1}$ (2) no reaction occurred

Scheme I

An alternate synthesis of N^{-}-amidino-3-amino- $\overline{-}$ -dimethylamino-6-chloropyrazinecarboxamide (IIa-14) was devised which might have broader application (Scheme III). Treatment of methyl 3 -amino- $\overline{5}, 6$-dichloropyrazinecarboxylate (Ib) with guanidine afforded the acylguanidine (IIc-82) which reacted with

Scheme II

with 1,2,3-trimethylguanidine and selected esters of type I; and (3) steric and statistical probability considerations favor this structure.

When the 5 -phenoxy-6-chloro ($\mathrm{Ic}-4$) and the 5 -(2 -di-methylaminoethoxy)-6-chloro ($\mathrm{Ic}-\overline{5}$) esters were heated with guanidine in 2-propanol, replacement of the 5 substituent with a guanidino group occurred with the formation of IIa-48 (Scheme I). The 5-methylsulfinyl-6chloro (Ie-1) and 5-mesyl-6-chloro (Ie-2) esters (see Scheme II) reacted with guanidine to give compounds (II) with the expected properties, but lack of stability prevented isolation of pure samples.
(2) I. Greenwahl, J. Am. Chem. soc., 47, 1443 (1929).
(3) W. Traube and K. Gorniak, Z. Angew. Chem., 42, 379 (192!).
dimethylamine in dimethylformamide to give (IIa-14). The product was identical with that obtained from Id14 and guanidine.

The intermediate esters were prepared by the methods outlined in Scheme II. A key intermediate for these syntheses was Ib which was first made ${ }^{4}$ from methyl 3-aminopyrazinecarboxylate (Ia-1) and sulfuryl chloride. As expected, methyl 3-amino-6-chloropyrazinecarboxylate (Ia-2) and sulfuryl chloride gave the same product (Ib). With methyl 3-amino-6-bromopyrazinecarboxylate ($\mathrm{I}: t-3$) replacement of the bromine
(4) R. J. Tull, J. ten Broeke, and E. J. Cragoe, Jr., are responsible for the original synthesis of this compound and Dr. J. van de Kamp and his colleagues adapted the method for the preparation of the laryer amounts of the material required in this study.

atom with chlorine occurred resulting in the formation of Ib . The conversion of $\mathrm{Ia}-2$ to the 4 -oxide ($\mathrm{I}-\mathrm{-}$) : mand subsequently to Ib by treatment with phosphoryl chloride also has been accomplished (see Scheme II).

Although the 6 -halogen atom of $\mathrm{I},-2$, $\mathrm{I}: 1-3$, and Ib is inert, the nucleophilic displacement of the \bar{j}-chloro atom of Ib occurs readily. Thus, refluxing a 2 -propanol solution of Ib with a variety of primary or second:ry amines produced the corresponding $\overline{5}$-amino deriv: tive (Id).

The reaction of Ib with liquid :ammonia in :1n :atoclave at room temperature produced : mixture of equal parts of 3 -amino-5, 6 -dichloropy:azinecarboxamide (IIIa) and the corresponding $\overline{5}$-:minino compound (IIIh) (Scheme IV). When higher temperatures were ('in-

Sheme IV

ployed, only IIIb was isolated. However, when the reaction was conducted in a highly polar solvent such as dimethyl sulfoxide, dimethylformanide, dimethyl sulfone. or sulfolane, the desired ester, methyl 3.5 -di-amino-6-chloropyrazinecarboxylate (Id-1) (Table I) waproduced in good yields.

The reaction of Ib with aromatic amines gave the best results when a mixture of the annine and the amine hydrochloride was used.

Methylhydrazine theoretically could react with Ib to produce either (or both) of two isomers (Id-47 and IV). However, it was proved that the product was the $\overline{5}$-(1methylhydrazino) compound ($\mathrm{I} d-47$) by demonstrating that it reacted with benzaldehyde to produce the hydrazone (Id-48) (Scheme V). Similitly, Carmi, ol al., ${ }^{6}$ found that 2 -haloalk:noic acids rencted with

methylhydrazine to yied the corewponding 2 -(1methylhydrazino): thkanoic acids.
Treatiment of ib with the sodium salt of the appropriate mercaptan, alk:anol, etc.. provided the i-muethylthio, -methoxy, ethoxy, -phenoxy, -(2-dimethytaminoethoxy), :und -merapto esters (I'-1-6) (see Table II). It should be noted that widh sodimen ethoxide, tramesterifieation oectured with the formation of the ethys ester of the $\overline{-1}$-ethoxy compound (I $\mathrm{c}-\mathrm{i}$ i) .

The reaction of Ib with sodium hydroxide ander a varicty of conditions g:ace, upon :acidification, cither :3-mmino-i, (i-dichloropyrazincentoxylic acid (Y: and of the \boldsymbol{f}-hydrox derivative (Vb) (Scheme VI). Cin-

fortumately, the senterification of V to If was manccesstul; therefore an alternate route to If was devised.
 pyrazincearboxylate ($\mathrm{I}-1$) with hydrogen peroxide pave the corresponding sulfoxide ($\mathrm{I}-1$) or sulfone ($\mathrm{I}-\mathrm{e}^{-2}$) depending upon the reaction conditions. In was fomed that the sulfoxide (I - -1) could be hydrolyzed readily to the -hydrosy ester (If) by heating in :aquens actioc acid.

Catalytic hydrogenolysis of the methyl 3-:1minno-ischoropyrazino:ates bearing at-amino. -hydroxy, methoxy. -dimethylmaino, or -benzylmino was aceonphished in good yields with the formation of the cortesponding dechloro cormpound (Ig-1-i). Optimum re:nction condition consisted of using $\%$ \% palladium-oncharcon catalyst in methanol in the presence of magnesium oxide. Inexplicably, the i-methylmano ester (Id-2) failed to react muder these conditions.

We have presented only a priont evidence that is in the - - -chlore atom of Ib which is involved in the nucleophilic displarement reactions. Howerer, the wnequivecal synthesis of 3 -mmino-fi-dimethyl:minopy:azincearboxylic acid (TI) has been :ccomplished and comparison of VI with VII derived from the saponific:tion of Ig-4 revenls that these componnde ne not identical but isomeric. Thus, it is the B -chloro atom that was replaced in the reaction of Ih with dimethylamine to give Ig-t. The hatomenation of methyl :3-mino-f

V1

VII

Table I

Id

			\%	$\begin{aligned} & \text { Pe- } \\ & \text { crystn } \end{aligned}$			-C	n. \%	- H	gen, 1/6	N	1. $\%-$
No.	12.	12	yield ${ }^{*}$	solvent ${ }$	Mp. ${ }^{\circ} \mathrm{C}$	Fiormula	Calcd	Found	Calcd	Found	Calcıl	Found
$1{ }^{\text {c }}$	1 l	11	91	1	212-213	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClN}_{4} \mathrm{O}$	35.57	35.80	3.48	3.38	27.65	28.01
2	CH_{3}	H	88	P	221-222	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O}$	38.81	38.74	4.19	4.22	25.86	25.49
3	$\mathrm{C}_{5} \mathrm{H}_{5}$	H	89	P	149-150	$\mathrm{Cs}_{8} \mathrm{H}_{1} \mathrm{ClN}_{4} \mathrm{O}_{5}$	41.66	42,11	4.81	5.05	24.29	24.24
4	$\mathrm{C}_{3} \mathrm{H}$;	H	75	P	138-140	$\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{ClN}_{4} \mathrm{O}_{4}$	44.18	44.21	5. 36	万. 39	22.90	22.89
i)	$\left(\mathrm{CH}_{3}\right): \mathrm{CH}$	H	70	P	125.5-126.5	$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Cl} \mathrm{N}_{4} \mathrm{O}_{2}$	44.18	43.82	5.36	5.18	22.90	22.62
6	$\mathrm{C}_{4} \mathrm{H}_{9}$	H	91	P	140-142	$\mathrm{C}_{10} \mathrm{H}_{55} \mathrm{ClN}_{4} \mathrm{O} 9$	46.42	46.39	5.84	5.77	21.66	21.67
7	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}$	H	51	P	113. $\overline{-1115.5}$	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}_{4} \mathrm{O}$	46.42	46.34	5.84	5.80	21.66	21.64
8	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$	H	75	P	106-108	$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{2}$	46.42	46.46	5.84	6.04	21.66	21.65
9	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$	H	38	D-W	:8-108	$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}$	46.42	46.31	5.84	5.72	21.66	21.25
10	$\mathrm{C}_{6} \mathrm{H}_{12}$	H	72	C	100. $\overline{-102.5}$	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClN}_{4} \mathrm{O}$	48.44	48.27	6.28	6.09	20.54	20.45
11	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$	H	40	PE	74.5-75.5	$\mathrm{C}_{11} \mathrm{H}_{1} \mathrm{ClN}_{4} \mathrm{O}_{2}$	48.44	48.65	6.28	6.50	20.54	$\div 0.57$
12	$\left(\mathrm{CaH}_{5}\right)_{2} \mathrm{CH}$	H	81	He	82.5-84.5	$\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{2}$	48.44	47.96	6.28	5.70	20.54	20.40
13	$\mathrm{C}_{6} \mathrm{H}_{13}$	H	70	P	72.5-75.5	$\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{5}$	50.25	50.27	6.68	6.60	19.54	19.45
14	CH_{3}	CH_{3}	97	M	145. $\overline{-146.5}$	$\mathrm{Cs}_{8} \mathrm{H}_{1} \mathrm{ClN}_{4} \mathrm{O}_{2}$	41.66	41.73	4.81	4.52	24.29	24.24
15	CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$	73	P	102-104	$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{2}$	44.18	44.16	5.36	5.24	22.90	22.81
16	CH_{3}	$\mathrm{C}_{3} \mathrm{H}_{7}$	58	P	83.5-85.5	$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{2}$	46.42	46.55	5.84	5.75	21.66	21.70
17	CH_{3}	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	78	P	$\overline{5} .5-\overline{6} .5$	$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}=$	4b, 42	46.70	5.84	5.97	21.66	21.46
18	CH_{3}	$\mathrm{C}_{4} \mathrm{H}_{9}$	74	P	519.5-61.5	$\mathrm{C}_{11} \mathrm{H}_{1} \mathrm{ClN}_{4} \mathrm{O}_{3}$	48.44	48.60	6.28	6.22	20.54	20.54
19	$\mathrm{C} \mathrm{H}_{5}$	$\mathrm{C}_{3} \mathrm{H}_{5}$	54	PE	99-101	$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{2}$	46.42	46.75	5.84	5.79	21.66	21.45
20	$\mathrm{CaH5}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	65	PE	80.5-83.5	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}$	48.44	48.39	6.28	6.37	20.54	20.40
21	$\mathrm{C} . \mathrm{H}_{5}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	75^{d}			$\mathrm{C}_{11} \mathrm{H}_{1} \mathrm{ClN}_{4} \mathrm{O}_{2}$						
22	$\mathrm{C} \pm \mathrm{H}_{5}$	CaH_{9}	91	PE	74.5-79.5	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{5}$	50.25	49.81	6.68	6.28	19.54	19.45
23	$\mathrm{C}_{3} \mathrm{IF}_{\mathbf{i}}$	$\mathrm{C}_{4} \mathrm{H}_{9}$	59	PE	45.5-47. ${ }^{\text {5 }}$	$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{4}$	51.91	52.00	7.04	6.94	18.63	18.54
24	$-\left(\mathrm{CH}_{5}\right)_{4}-$		95	P	168-171	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{4}$	46.78	47.01	5.10	4.95	21.83	21.86
25	$-\left(\mathrm{CH}_{2}\right)_{6}-$		75	P	109-111	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{2}$	50.61	50.54	6.02	5.79	19.68	19.60
26	$\mathrm{CH}=\mathrm{CHCH}_{2}$	H	69	P	105-106.5	$\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}_{2}$	44.54	44.46	4.57	4.61	23.09	23.12
27	$\mathrm{CH}_{2}=\mathrm{CHCH}$:	C. H_{3}	70	P	90.5-92	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{2}$	46.78	46.85	5.10	5.08	21.83	21.73
28	$\mathrm{CH}=\mathrm{CHCH}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	54	$\mathrm{P}-\mathrm{W}^{\text {l }}$	43.5-45.5	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{ClN}_{4} \mathrm{O}_{3}$	48.80	48.70	5.58	5.40	20.70	20.44
29	Δ	H	98	P	167-169	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}$	44.54	44.63	4.57	4.52	23.09	23.09
30		11	78	P	132-133	$\mathrm{C}_{10} \mathrm{H}_{33} \mathrm{ClN}_{4} \mathrm{O}_{2}$	46.78	46.93	5.10	5.18	21.83	21.92
31		H	98	P	119.5-121.5	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{ClN}_{4} \mathrm{O}_{5}$	48.80	48.91	5.58	5.39	20.70	20.59
32	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	H	64	M	$157-158$	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}$	53.34	53.46	4.48	4.46	19.14	19.22
33	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	1I	66	P	112.5-114.5	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{4} \mathrm{O}_{2}$	54.81	55.24	4.93	4.99	18.27	18.20
34	$2-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	H	84	P	171-174	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClFN} \mathrm{N}_{4}$	50.25	50.05	3.89	4.08	18.03	18.06
35	$4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}$:	H	$93{ }^{\text {d }}$		137-138	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$						
36	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2} \mathrm{CH}_{5}$	17	59	P	115-119	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{2}$	54.81	55.25	4.93	4.88	18.27	18.13
37	$\left[\mathrm{O}-\mathrm{CH}_{2}\right.$	11	81	1^{2}	148-149	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}_{3}$	46.73	46.14	3.92	4.08	19.82	19.57
38	$\mathrm{CF}_{3} \mathrm{CH}_{2}$	H	97	W	153-154	$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}$	33.76	34.10	2.83	3.08	19.69	19.57
39	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	H	76	P-W	$124.5-125.5$	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}$	36.19	36.46	3.37	3.22	18.76	18.70
40	$\mathrm{HOCH}_{2} \mathrm{CH}$.	H	100^{d}		$15 \overline{0}-157$	$\mathrm{Cs}_{8} \mathrm{HClN}_{4} \mathrm{O}_{3}$						
41	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCCH}_{2} \mathrm{CH} \mathrm{H}_{2}$	H	40	Me	257	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$	38.72	39.25	5.52	5.55	22.58	22.33
42	$\mathrm{HOCH}_{(}(\mathrm{CHOH})_{4} \mathrm{CH}:{ }^{\text {h }}$	H	60^{d}		172-175	$\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}$;						
43^{\prime}	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	71	P	171.5-174	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}_{2}$	51.71	51.33	3.98	4.12	20.10	20.30
44^{f}	$4-\mathrm{ClC}_{6} \cdot \mathrm{H}_{4}$	H	89	A	206.5-207.5	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$	46.02	45.96	3.22	3.10	17.89	17.86
45	CH_{3}	$\mathrm{CH}_{3} \mathrm{O}$	68	P	144-146	$\mathrm{CsH}_{41} \mathrm{ClN}_{4} \mathrm{O}_{3}$	38.95	38.41	4.50	4.33	22.72	20.50
46	$-\mathrm{CH}_{2} \mathrm{CH} \mathrm{N}_{3}\left(\mathrm{CH}_{3}\right)$	$\mathrm{CH}_{4} \mathrm{CH}_{2}-$	88	P	186-188	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{6} \mathrm{O}_{2}$	46.23	46.36	5.64	5.49	24.51	24.02
47	CH_{3}	NH_{2}	67	E	$136 . \overline{0}-138 . \overline{5}$	$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{ClN}_{5} \mathrm{O}_{2}$	36.29	36.54	4.35	4.08	30.23	30.82
48^{8}	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}=\mathrm{N}$	179.5-180.5	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClN}_{6} \mathrm{O}_{2}$	52.58	52.25	4.41	4.39	21.90	21.72

${ }^{\text {a }}$ The compounds in this table were prepared by method B-3 in the Experimental Section unless otherwise specified. ${ }^{b}$ A, acetonitrile; C, cyclohexane; D, dimethylformamide; E, ethanol; He, hexane; M, nethanol; P, 2-propanol; PE, petroleum ether (Merck's Benzin, bp 30-60) W , water; Et, ethyl acetate; Ac, acetic acid; S, dilute methanesulfonic acid; H , dilute HCl ; N , dilute NaOH ; $\mathrm{H}-\mathrm{N}, \mathrm{A} c-\mathrm{N}$, and $\mathrm{S}-\mathrm{N}$ indicate that the compound was purified by dissolving in the indicated dilute acid and precipitating with dilute $\mathrm{NaOH} .{ }^{c}$ This compound was prepared by method B-2. ${ }^{d}$ This compound was used in the next step without purification. e Isolated
 from D-glucamine.
corresponding 5 -halo derivatives and the easy nucleophilic displacement of the halogen atom also has been accomplished. ${ }^{7}$

Bromination of methyl 3,5-diaminopyrazinecarboxylate (Ig-1) afforded the 6 -bromo derivative (Ih-1). Analogously, with iodine and mercuric acetate in aqueous dioxane the 6-iodo compound (Ih-2) was obtained.

Structure-Activity Relationships.-Each of the N^{-} amidino-3-amino-5-substituted 6-halopyrazinecarbox-
amides (II) synthesized were assayed for their deoxycorticosterone acetate (DOCA)-inhibitory activity using the adrenalectomized rat according to the method described earlier. ${ }^{1.8}$ The compounds routinely were administered subcutaneously, but similar results were obtained with representative compounds when the oral or intraperitoneal routes were employed. A scoring system ${ }^{9}$ similar to that already described ${ }^{1}$ was used and the results are recorded in Tables III-V.
(8) M. S. Glitzer and S. L. Steelman, Nature, 212, 191 (1966).
(9) see footnote g. Table III, for a deseription of this system.

E:trly in the study it was fomm that \mathcal{X}-amidino-:3-:mmo-in-substituted amino-(i-chloropyrazinecarbosamides (HIa) exhibited a high order of activity in this tost. Thus, astudy of the effect of substituents on the i-mano group was made (Trble III). Maximal activity war obtained with the parent $\overline{5}$-imino compound (IIa1), which produced 50% reversh of D() C at $2.5 \mu \mathrm{~g}$, rat (spironolactono requires $400 \mathrm{\mu g}$ rat). (Ompound-

IIa

where $\mathrm{R}^{2}=\mathrm{H}$ and $\mathrm{R}^{\prime}=$ mothyl, cthy) propyl, isopropyl, or butyl (2-6) were nearly as potent as the parent. However, those having a branched butyl (7--9) or : : higher alkyl substituent (10-1:5) were mankcdly less active.
 ties an great or greater than the $\overline{\text { on all }}$ ylamino analogs. and it was generally beneficial to have the total mass of the substituent divided between two (R^{1} and R^{2}) bather then in a single group. Thms. the dimethyl:mmino derivative (14) is more potent than the mothyl:mino (2), and the N-ethyl-N-butylamino (22) is much more active than the hexylmino compound (1:5). Joining R^{1} and R^{2} to form : ring (24 and 25) affords compounds considerably less potent than their dialliyl counterparts (19 : and 22).

Allyl (2ti-28) and evoloalky (29-31) substituents gave results comparable to the :matogous :alky derivativer. The benzy (32), substituted benzyl ($33 ;-35$), :und phenethyl (30) derivatives exhibited only weak aclivity, but the furfury compound (37) was relatively potent. The ω-polyfluoroalkyl (38 and 39) , w-hydroxyalkyl (40), polyhydroxyalkyl (42), and ω-aminoalkyl (41) derivatives which were studied exhibited little activity.

The introduction of a phenyl substituent (43) produced a compound with moderate activity, but the p chomonenylanage ($4 t$) was hemply devoid of activity. The compounds in which the :mino group bore a methoxy (45) :mano (i.r., hydrazino, to), or amidino (i.e. grumidino, 48) subetitucht or where two alkyl groups
were joined through a nitrogen atom to form aring (piperazine, 47) generally exhibited a low order of :netivity

The effect of substituting the terminal gumidino ni(rogen (R^{3} and R^{4}) of compomade of type IIb was studiced (see T'able IV). The high potency of the parent. B :mino compound (Lta-1) is mantained upon introduction of a waricty of :dkyl. substituted alkyl, or :ury substituents (4) (if) at R^{*} or similar substitucats at both R^{3} and $h^{4}(6,5-68)$. some diminution of activity is noted with bulkier wroups (5̄, is, tio. mud (iv).

H14

The potchey of the - -isopropylamino compound (i) is actually increased in the introduction of a methyl. 2hydroxyethyl, or beazyl group at R^{*} or : mothyl at both R^{3} and $\mathrm{R}^{4}(69-72)$. Several other $\overline{5}$-alkyl- : mid di:ulkyl:mano derivative where $\mathrm{I}^{3}=\mathrm{I}^{4}=\left(\mathrm{H}_{2}(73)-79\right)$ roecived activity seores about the same as the :malogs where $\mathrm{R}^{2}=\mathrm{P}^{4}=\mathrm{H}(26,30,6,14,15,17$, :und 19), 10. spectively.
 cabownade (II:-1) in which the chlorinc is replaced by bromine (80) or by iodine (81) are very active, although somowhat lese than the chlore compound (Table V).

Compounds of type It where X is Cland Y° is charo. hydroxy, mothoxy, ethoxy, mereapto, on methylthio (8)- 87) are much lese potent than the - -imino series (IE1\%.

Sone of the five compounds in which the (-chlore atom (X) was replaced by hydrogen (88-92) showed appreciable activity. This is not sumprising in the case where Y is benzylmmo (90), hydroxy (91), or methoxy (92); however, for the :mino (88) and dimethylamino (89) compounds, it represents a marked difference from the 6 -chloro analogs (1 and 14).

E:ach of the compounds recorded in Tables IIl-V also were cested intraperitoncally in nommal rats and intravenously in dogs." The compounds were active as mensured by thea assays and, in general, the relative

			$\%$	$\begin{gathered} \text { Re- } \\ \text { crystn } \\ \text { sol- } \end{gathered}$	Mp.		('amb	Un, \%	Hydro	en,	Nit	9	Clı	1 e \%	$\begin{aligned} & \text { DOCA } \\ & \text { inlib } \end{aligned}$
No.	121	12"	yield ${ }^{\text {a }}$	- vent ${ }^{\text {b }}$	${ }^{\circ} \mathrm{C}$	Formula	Calcd	Found	Calcd	Found	Caled	Found	Calcd	Found	score ${ }^{\text {g }}$
1	H	11	93	$\mathrm{H}-\mathrm{N}$	240.5-241.5	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{CLN}: \mathrm{O}$	31.38	31.59	3.51	3.43	42.70	42.85	15.44	15.42	+4
2	ClH_{3}	H	89	$\mathrm{H}-\mathrm{N}$	238-239	$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{ClN}_{5} \mathrm{O}$	34.50	34.19	4.14	4.28	40.24	39.02	14.55	14.56	+3
3	CaH_{6}	H1	63	$\mathrm{H}-\mathrm{N}$	217-218	$\mathrm{CsH}_{12} \mathrm{ClN}: \mathrm{O}$	37.29	37.35	4.69	4.73	38.05	38.05	13.76	13.76	+3
4	$\mathrm{C}_{3} \mathrm{H}$;	H	93	M-W	221-222	$\mathrm{C}_{9} \mathrm{H}_{44} \mathrm{ClN}: \mathrm{O}$	39.78	39.75	5.19	5.28	36.09	30.89	13.05	13.05	+3
5	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	H	75	$\mathrm{N}-\mathrm{W}$	215	$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ClN}: \mathrm{O}$	39.78	39.80	5. 19	5.13	36.09	35.:-	13.05	12.97	+3
6	$\mathrm{C}_{4} \mathrm{H}_{9}$	H	65	P	219.5	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}: \mathrm{O}$	42.03	42.26	5.64	5.65	34.32	33.95	12.41	12.47	$+3$
7	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{5}$	H	76	$\mathrm{M}-\mathrm{W}$	221	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}_{7} \mathrm{O}$	42.03	41.81	5.64	5.31	34.32	3 3.32	12.41	12.35	+1
8	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$	H	74	$\mathrm{N}-\mathrm{W}$	208-209	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN} \mathrm{N}_{3}$	42.03	42.02	5.64	5.64	34.32	34.16	12.41	12.40	+1
9	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$	H	84	M-W	222-223	$\mathrm{C},{ }_{0} \mathrm{H}_{46} \mathrm{ClN}_{7} \mathrm{O}$	42.03	42.20	5.64	5.59	34.32	34.00	12.41	12.27	\pm
10	$\mathrm{C}_{6} \mathrm{H}_{11}$	H	70	P	215-216	$\mathrm{C}_{1} \mathrm{H}_{18} \mathrm{ClN}_{7} \mathrm{O}$	44.07	44.01	6.05	5.88	32.70	32.66	11.83	11.85	+1
11	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$	H	$8!$	I	186.5-188.5	$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}$	$44.0{ }^{-}$	44.34	6.05	5.81	32.70	32.41	11.83	11.75	+1
12	$\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{2} \mathrm{CH}$	11	82	P	$\because 09-211$	$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN} \mathrm{N}_{7} \mathrm{O}$	44.07	44.02	6.05	5.95	32.70	32.59	11.83	11.81	\pm
13	$\mathrm{C}_{6} \mathrm{H}_{13}$	11	100	N-W	194.5-196.5	$\mathrm{C}_{4} \mathrm{H}_{20} \mathrm{ClN}$	45.93	45.95	6.42	6.42	31.25	31.03	11.30	11.20	\pm
14	CH_{3}	ClH_{3}	93	$\mathrm{H}-\mathrm{N}$	210-217	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{ClN}_{5} \mathrm{O}$	37.29	37.24	4.69	4.49	38.05	37.83	13.76	13.78	+3
15	CH_{3}	$\mathrm{C} 2 \mathrm{H}_{6}$	92	$\mathrm{H}-\mathrm{N}$	229-230	$\mathrm{C}_{9} \mathrm{H}_{44} \mathrm{ClN}: \mathrm{O}$	39.78	39.99	5.19	5.18	36.09	35.83	13.05	13.15	+1
16	CH_{3}	$\mathrm{C}_{3} \mathrm{H}=$	97	M-W	$214-215$	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl} \mathrm{N}_{1} \mathrm{O}$	42.03	42.31	5.64	5.94	34.32	34.40	12.41	12.56	+4
17	CH_{3}	$\left(\mathrm{CH}_{3}\right) \times \mathrm{CH}$	70	$\mathrm{M}-\mathrm{W}$	207-208	$\mathrm{Cl}_{10} \mathrm{H}_{16} \mathrm{ClNiO}$	42.03	42.40	5.64	5.70	34.32	34.05	12.41	12.45	$+4$
18	CH_{3}	$\mathrm{C}_{4} \mathrm{H}_{9}$	95	M-W	208-209	$\mathrm{Cl}_{15} \mathrm{H}_{18} \mathrm{ClN}_{7} \mathrm{O}$	44.07	44.34	6.05	6.08	32.70	32.38	11.83	11.94	+3
19	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	75	E-W	21%	$\mathrm{C} 川 \mathrm{H}_{18} \mathrm{ClNiN}$	42.03	42.00	5.64	5.52	34.32	34.14	12.41	12.21	+3
20	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{3} \mathrm{H}_{5}$	92	A	224-225	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}$	44.07	44.25	6.05	6.03	32.70	32.63	11.83	11.8!	$+3$
21	CaH_{5}	$\left(\mathrm{CH}_{3}\right) . \mathrm{CH}$	70	A	-07-208	$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{Cl} \mathrm{Ni}_{5} \mathrm{O}$	44.07	43.91	6.05	5.82	32.70	32.58	11.8:3	11.68	+3
22	CaH_{5}	$\mathrm{C}_{4} \mathrm{H}_{0}$	$1) 8$	P	200.5-201.5	$\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{ClN}_{7} \mathrm{O}$	45.93	46.06	6.42	6.49	31.25	31.02	11.30	11.34	$+3$
23	$\mathrm{C}_{3} \mathrm{H}_{5}$	$\mathrm{C}_{4} \mathrm{ll}_{9}$	84	P	215-217	$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}$	47.62	47.60	6.76	6.77	29.91	29.44	10.82	10.93	$+1$
24	$-(\mathrm{CH} \mathrm{\%})_{4-}$		40	$\mathrm{H}-\mathrm{N}$	244.5-245.5	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ClN}: \mathrm{O}$	42.33	42.34	4.97	4.87	34.06	34.11	12.50	12.71	+1
25			49	1	224-225	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{ClN} \mathrm{NiO}^{\text {O }}$	46.22	46.55	5.82	5.85	31.45	31.41	11.37	11.18	\pm
26	$\stackrel{-\left(\mathrm{CH}_{2}\right)_{6-}}{\mathrm{CH}=(\mathrm{HCH}}$		81	M-W	213-214	$\mathrm{C}_{9} \mathrm{H}_{42} \mathrm{ClN}$: O	40.08	40.41	4.48	4.44	36.36	36.07	13.15	13.25	+4
27	$\mathrm{CH}_{2}=\mathrm{CHCll}$ $\mathrm{CH}_{2}=\mathrm{CHCH}^{2}$	CHs	9%	N-W	207-208	$\mathrm{C}_{60} \mathrm{H}_{44} \mathrm{ClN}_{7} \mathrm{O}$	42.33	42.59	4.97	4.92	34.56	34.17	12.50	12.38	$+3$
28		$\mathrm{C} \mathrm{H}_{5}$	92	P-W	208-209	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClN}_{7} \mathrm{O}$	44.37	44.51	5.42	5.43	32.93	32.58	11.91	11.84	+3
29		H	85	$\mathrm{H}-\mathrm{N}$	$213-215$	$\mathrm{CsH}_{2} \mathrm{ClN}_{2} \mathrm{O}$	40.08	40.24	4.48	4.43	36.36	36.34	13.15	13.31	$+3$
30		11	95	A-W	220-221.5	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ClN}, \mathrm{O}$	42.33	42.57	4.97	5.14	34.56	34.47	12.50	12.57	$+4$
31		H	65	Ac- ${ }^{-1}$	219-220	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{ClN}^{-} \mathrm{O}$	44.37	44.36	5.42	5.54	32.93	33.01	11.91	11.97	\pm
32	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} 1 \mathrm{H}_{2}$	11	44	$\mathrm{H}-\mathrm{N}$	206-209	$\mathrm{C}_{3} \mathrm{H}_{44} \mathrm{ClN}_{3} \mathrm{O}$	48.83	48.83	4.41	4.49	30.67	30.44			+1
33	4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	1 H	57	A	216-217	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}$	50.37	50.16	4.83	4.77	29.38	29.31	10.62	10.58	+1
34	$2-1 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	H	100	1	206-208	$\mathrm{C}_{3} \mathrm{H}_{13} \mathrm{ClFN} \mathrm{N}_{3} \mathrm{O}$	46.22	46.40	3.88	3.82	29.03	28.82	10.50	11.40	+1
35	$4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}$	H	96	$\mathrm{H}-\mathrm{N}$	225-226	$\mathrm{C}_{3} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}: \mathrm{O}$	44.08	44.01	3.70	3.95	27.68	27.69	20.02	20.10	\pm
:36	$\underset{O}{\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2} \mathrm{CH}_{2}} \quad 1$		57	$\mathrm{P}-\mathrm{HO}^{\circ}$	199-202	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNiO} \cdot \mathrm{HCl}$	$4 \overline{0} .41$	45.20	4.63	4.71	26.48	25.94			\pm
37		H	92	E	217-218	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2}$	42.65	42.80	3.91	3.89	31.66	31.37	11.45	11.50	$+3$
38	$\mathrm{CF}_{3} \mathrm{CH}$	H	77	-1	232-233	$\mathrm{CsH}_{9} \mathrm{CliF}_{3} \mathrm{~N}_{3} \mathrm{O}$	30.83	30.82	2.91	3.13	31.46	31.27	11.38	11.26	+1
39	$\mathrm{CF}_{3} \mathrm{CHH}_{3} \mathrm{CH}$	H	65	A	221-222.5	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}$	33.19	33.57	3.40	3.64	30.11	29.92	10.89	10.86	+2
40	$\begin{aligned} & \mathrm{HOCH} \mathrm{H}_{2} \mathrm{H}: \\ & \left(\mathrm{C} 11_{3}\right): \mathrm{NH}_{2} \mathrm{CH} \end{aligned}$	H	(i3)	$\mathrm{Fi}^{\text {c }}$	2:2-273	$\mathrm{CsH}_{12} \mathrm{ClN}_{7} \mathrm{O}_{2} \cdot \mathrm{HCl}$	30.98	31.40	3.90	4.30	31.61	31.38	22.86	22.61	+1
41		11	98	Н- \%	192.5-194.5	$\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ClN}_{8} \mathrm{O}$	39.93	39.83	5.70	5.72	37.26	37.63	11.79	11.65	\pm
42	$\begin{aligned} & \mathrm{HOCHe}(\mathrm{CHOH}) 4-\mathrm{H} \\ & \mathrm{CH}_{2}{ }^{-} \end{aligned}$		68	D-W	223-224	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClN}_{7} \mathrm{O}_{6}$	36.59	36.54	5.12	5.15	24.90	24.34	9.00	9.01	\pm
43	$\mathrm{C}_{6} \mathrm{H}_{6}$		95	E	248.5-250. 5	$\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{ClN}: \mathrm{O}$	47.15	47.13	3.96	4.09	32.07	31.65	11.60	11.70	$+3$
44	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	11	95	$\mathrm{S}-\mathrm{N}$	276-278	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{Ni}_{5}$	42.36	42.08	3.26	3.48	28.82	28.23	20.83	20.32	\pm
45	CH_{3}	$\mathrm{CH}_{3} \mathrm{O}$	85	$\mathrm{H}-\mathrm{N}$	203.5-204.5	$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2}$	35.11	35.23	4.42	4.28	35.83	36.05	12.95	13.03	$+2$
46	CH_{3}	N H_{2}	92	$\mathrm{H}-\mathrm{N}$	234	$\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{ClN}_{8} \mathrm{O}$	32.50	32.85	4.29	4.65	43.32	42.08	13.71	13.88	+1
47	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{8}\right)$	$\mathrm{CH}_{2} \mathrm{CH}:$	74	$\mathrm{H}^{d . f}$	299-300	$\mathrm{C}_{4} \mathrm{H}_{77} \mathrm{ClN}_{8} \mathrm{O} \cdot 2 \mathrm{HCl}$	34.25	33.91	4.97	5.08	$29.0 \overline{5}$	29.45	27.58	27.09	0
48	$\mathrm{NH}_{2} \mathrm{C}(=\sim \mathrm{H})$	H	38	$\mathrm{H}^{\text {d }}$	>340	$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{ClN} 9 \mathrm{O} \cdot 2 \mathrm{HCl}$	24.40	24.62	3.51	3.57	36.58	36.41	30.87	30.52	0

${ }^{\text {a }}$ The compounds are prepared by method D-1 unless otherwise specified. ${ }^{b}$ See footnote b, Table I. ${ }^{c}$ Isolated as the hydrochloride salt. ${ }^{a}$ Isolated as the dihydrochloride salt. e Derived from D-glucamine. ${ }^{f}$ Prepared by method D-2. ${ }^{a}$ The DOCA inhibition score is the dose (in micrograms per rat) producing 50% reversal of the DOCA Na/K effect: $+4=<10 \mu \mathrm{~g} / \mathrm{rat},+3=10-50,+2=$ $51-100,+\mathbf{1}=101-800, \pm=>800,0=$ no activity at $800 \mu \mathrm{~g}$. Although no statistically significant activity was noted at the last dose, the possibility of activity at higher doses exists. Furthermore, most of the compounds which scored zero in this test were active diuretics in the normal rat assay. The animals weighed $130=3 \mathrm{~g}$; thus, the dose in milligrams per kilogram is approxinately 0.008 times the microgram per rat value.
potency of individual members of the series paralleled those recorded in the adrenalectomized rat test. Representative compounds were assayed in these two tests using the oral route of administration and found to be active.

By each assay procedure, diuresis and saluresis is noted, while potassium ion excretion is either unaffected or repressed. The effects observed in rats are somewhat more pronounced than in dogs when equivalent doses are used.

Several members of this series have been tested in combination with certain other diuretics and found to produce additive or synergistic effects on saluresis while reversing the kaluresis caused by the other agent.

Selected compounds from this series are presently undergoing clinical trial. ${ }^{11}$ The observations in humans appear to correlate quite well with the animal studies.
(11) Preliminary reports include: N. W. Moukheibir and W. Mr. Firkendall, Clin. Res.. 13, 25 (1965); T. B. Reynolds and H. C. Pelle. ibid.. 14, 184 (1966): R. J. Sperber and S. Fisch, itid., 14, 262 (1966).

Experimental Section ${ }^{1212}, 1:$

 wis prepared by the melhod of R:mish. ${ }^{15}$ All other annines used in (his study were conmercially available.
2. Guanidinium Chlorides.--The sources of guanidinimin chloride and of the 2-hydraxyethyl, phenyl, benzyl, phenethyl, :and 1,1 -dibutyl derivatives have been described. ${ }^{-1} p$-Chloro-, ${ }^{16}$ p-fluoro- ${ }^{16}$ 2,4-dichloro-, ${ }^{17}$ and $: 3,4$-dichlorobenzylguanidininm chloride ${ }^{18}$ and 1,1 -diethylguandiniom chloride ${ }^{19}$ lave been (lescribed elsewhere. The shlface silk ofo-chloroben arl-. ${ }^{\text {m }}$ p-methoxybenzy-, ${ }^{17} p$-methylbenzyl-, α-methythenzyl-, ${ }^{21}$ 2, 4-di-

[^1]
 psendothimmitum sulfate procednre and were ramerod in their hydrochboride salts :weording to the mechod sleesdy described. The physical properties uf these bydromhtrides :ow given in Table I.

Methyl- abd 1.1-dimethylguandinimm sulfate. Whicle :ore ronsmercialiy :mailable, wece used per se witbind ronveceimu da do chlorides.
B. Methyl 3-Amino-5-substituted Amino-6-chloropyrazinoates (Table I). 1. Methyl 3-Amino-5,6-dichloropyrazinecarboxylate ${ }^{4}$ (Ib). Route a..... [ader inhydron- anditum.. :

 - 4.58 moles wer : period of 30 min after which stirring wio contimued for 1 hir. During (his period, the temperat mre rose (1) 50° and then began 10 subside. The mixture was be:ted r:in(iomsly to reflos, refoxed for \bar{i} her, atd then stirred overnight :a room temperathre. "I'ha oolvent ind excess so och were removed ly distillation, and the dark red residne wat ehilled (at fio The

 1: (1! -18).
 194:1:

Furumulu	--Carloni, \because -		- M1ydrozen. 1% -		--Nitroten, \%--		--..-Chlosine.		$\begin{aligned} & \text { 1oca } \\ & \text { Inlii) } \\ & \text { stire }{ }^{i} \end{aligned}$		
			Calcd	Fommi		Fouml					
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{ClNA}_{7} \mathrm{O}$	34.50	34.63			4.14	4.04	40.24	39.91			$+4$
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{ClN}_{7} \mathrm{O}_{2} \cdot \mathrm{HCl}$	30.98	30.56	4.22	4.51	31.62	31.36		...	+4		
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClN}_{7} \mathrm{O}$	48.83	48.89	4.41	4.62	30.67	30.56	. .		+4		
$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}$	44.08	44.12	3.70	3.91	27.68	27.18			+4		
$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}$	44.08	44.27	3.70	3.95	27.68	27.83	. .		+:		
$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClFN}_{i} \mathrm{O}$	46.23	46.34	:3.88	: 3.80	29.0:3	28.76	\ldots		+4		
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{7} \mathrm{O}$	50.37	50.34	4.83	4.76	29.38	29.07			+4		
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}^{-} \mathrm{O}_{2}$	48.19	48.02	4.61	4.69	$\underline{28.03}$	27.55	...	\ldots	+4		
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{~N}_{7} \mathrm{O} \cdot \mathrm{HCl}$: 36.73	36.5	3.108	3.24	23.07	22.88	\ldots	\cdots	$+8$		
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{~N}_{7} \mathrm{O}$	40.17	83.95	3.11	3.06	25.23	$\because 4.91$			+		
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClN}_{7} \mathrm{O}$	51.80	52.08	5.21	5.23	28.19	$\because 7.88$	\ldots		+4		
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN} \cdot \mathrm{O}$	55.21	50.50	4.36	4.58	26.51	26.38	.		$+3$		
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}$	50.37	50.22	4.83	4.62	29.38	29.14	+4		
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{7} \mathrm{O}$	50.37	50.67	4.83	4.86	29.38	29.08	+4		
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{8} \mathrm{O} \cdot 2 \mathrm{HCl}$	36.61	36.89	3.84	4.12	28.47	28.14	\ldots	\ldots	+4		
$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClN}_{7} \mathrm{O} \cdot \mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$	38.85	39.05	4.01	4.12	24.40	24.32	.		+ 3		
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{O} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$	30.78	30.74	4.84	5.00	31.41	31.41	22.72	23.ss	+4		
$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}-\mathrm{O}$	42.03	42.02	5.64	5.45	34.32	34.14	12.41	12.49	+4		
$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{ClN}=\mathrm{O}$	49.19	49.01	7.08	6.94	28.68	28.86	10.35	10.4:3	+ 3		
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{7} \mathrm{O} \cdot \mathrm{HCl}$	45.41	45.22	4.63	4.48	26.48	26.16			+4		
$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}_{7} \mathrm{O}$	42.03	42.28	5.64	5.53	34.32	84.14	\ldots	- 1	+4		
$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN}_{7} \mathrm{O}$	44.07	44.35	6.05	6.04	32.70	32.62	11.83	11.67	+4		
$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN}_{7} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	36.57	36.55	5.58	3.28	27.15	27.23		...	+4		
$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClN}^{-} \mathrm{O}$	53.11	53.59	5.57	5.31	27.10	26.69			+4		
$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{ClN}_{7} \mathrm{O}$	44.37	44.50	5.42	5.25	32.93	32.76	11.91	11.5\%	+4		
$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{ClN}_{7} \mathrm{O}$	46.22	46.40	5.82	6.14	31.45	31.34			+ ;		
$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClN}_{7} \mathrm{O}$	45.93	45.95	6.42	6.50	31.25	30.81			+4		
$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}_{7}(\mathrm{O}$	42.03	41.97	5.64	5.63	34.32	34.13	12.41	12.26	+ 3		
$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN} \mathrm{N}_{2} \mathrm{O}$	44.07	44.17	6.05	5.81	32.70	32.73	11.8:3	11.86	+ 3		
$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClN} \mathrm{N}_{-} \mathrm{O}$	45.93	45.88	6.42	6.36	31.25	31.06	11.30	11.09	+4		
$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClN}_{7} \mathrm{O}$	45.93	46.03	6.42	6.11	31.25	31.14	11.30	11.35	+4		

compond was isolated as the hydrochloride hydrate salt. s We are indebted to Mr. C. M. Robb for the preparation of this cmpomul. ${ }^{n}$ This compound was isolated as the hydrochloride hemih-drate salt. ${ }^{i}$ See footnote g, Table III.
leum ether ($\mathrm{bp} 30-60^{\circ}$) (300 ml), and dried yielding 888 g of red (rystalline $\mathrm{Ib}, \mathrm{mp} 228-230^{\circ}$. The crude product was dissolved in boiling acetonitrile (56 1.) and passed through a heated ($7(1)$ 80°) columu of decolorizing chareoal (444 g). The column war washed with hot solvent (251 .) and the combined eluate was concentrated in vacuo (to about 6 1.) and chilled. The yield of yellow crystalline Ib was 724 g (66 / $/$) . Additional recrystallizations from acetonitrile gave pure material (See Table II).

Route b-Under anhydrous conditions, Ia-2 ${ }^{1}(9.3 \overline{5} \mathrm{~g}$, (0.05 mole) was treated dropwise with stirring with $\mathrm{SO}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ during a 10 -min period. After 45 min, gas was evolved, the mixture became red, and heat was evolved. After standing (overuight at room temperature, the nixture was heated at 710° for 1 hr . The excess $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ was removed by evaporation at reduced pressure and the residue (11.2 g) was recrystallized from acetonitrile (300 nnl) (using decolorizing charcoal) to give 4.2 g (38%) of Ib . Subsequent recrystallization gave pure material.

Route c.-Upon heating a nixture of Ia-31 ($34.8 \mathrm{~g}, 0.15 \mathrm{~mole}$) and $\mathrm{SO}_{2} \mathrm{Cl}_{2}(89 \mathrm{ml})$ for 1 min on a steant bath, a vigorous reaction occurred. The reaction vessel was cooled and then allowed to stand for 20 hr . The product was isolated and purified as described for method b to yield $4 \mathrm{~g}(12 \%)$ of pure Ib .
 Incer paper.
2. Methyl 3,5-Diamino-6-chloropyrazinecarboxylate (Id-1). -A solution of Ib $(100 \mathrm{~g}, 0.45$ mole) in dry dimethyl sulfoxide (DIISO) (1 l.) was matintained at $6 \overline{5}-70^{\circ}$ and dry ${ }^{2} \mathrm{H}_{3}$ was
admitted below the surface with stirring over a period of 4 . nin. The solution was cooled to 10° while the procedure was continued for another $1: 25 \mathrm{hr}$. The yellow reaction mixture was poured into cold water (2 1.) and the light yellow solid that separated was removed by filtration, thoroughly washed with water, and dried. The yield was $82.5 \mathrm{~g}(91 \%)$. Recrystallization from acetonitrile gave pure material. Similar results were obtained when the reaction was carried out in other highly polar solvents such as DMF, dimethyl sulfone (liquid), or sulfolane.

When the reaction was carried ont in an autoclave nsing licinid ammonia at room temperature for 24 hr , a mixture (approximately 1:1) of IILa, mp 291.5-29;..5 ${ }^{\circ}$ (from DNIF), and IIIb, $\mathrm{mp} 218.5-220.5^{\circ}$ (from methanol), was obtained. At 60° comlplete conversion to IIIb occurred.
Anal. Caled for $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}$ (IIIa): C, 29.07; $\mathrm{H}, 1.95$; N, 27.06. Found: C, $29.58: \mathrm{H}, 1.87 ; \mathrm{N}, 27.36$.
Anal. Caled for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{ClN}_{5} \mathrm{O}$ (IIIb): C, $32.01 ; \mathrm{H}_{2} 3.22$; - $\mathbf{~}, 37.33$; $\mathrm{Cl}, 18.90$. Found: C, $32.36 ; \mathrm{H}, 3.00 ; \mathrm{N}, 37.50$; $\mathrm{Cl}, 18.84$.
3. Methyl 3-Amino-5-dimethylamino-6-chloropyrazinecarboxylate ($\mathbf{I d}-14$). -A suspension of $\operatorname{Ib}(178 \mathrm{~g}, 9.5$ mole) in 2-propanol (1.11.) was stirred while dimethylanine (200) $\mathrm{g}, 4.44$ moles) in - L-propanol (2. 1.) was added, :nd then the mixtine was refloxed for 1 hr. The solntion wats couled in an ice beath :und thu erystalline product (hat separated was remaved by filtration :und dried. The yield wan $177.2 \mathrm{~g}(97 \mathrm{c}, \mathrm{c})$; for purificalion, (he prodect was recrystallized from methanol.

Tinble 1

IIc

Re．															
		（i．		$\begin{aligned} & \text { crosid } \\ & \text { mole } \end{aligned}$			：indori，		11－91myen，${ }^{\text {a }}$		Nitrozen，${ }^{\text {\％}}$		（＇limatime，＇${ }^{\text {a }}$		1911 ： imbか
Nir．	5－1	S	Viclli	（1314＂	$\mathrm{I}_{13}{ }^{\circ}{ }^{\prime}$	lorramiat	Cinlel	Forntra	cinlel	lobinel	（：1lcı	lıniml	（＇inlonl	Fuctul	－ture
80	N11．	Lir	52	11－N		（61shindio	$\underline{20.29}$	20.34	¢ 9.	3.04	35．75	35． 20			－${ }^{\text {a }}$
81	NH：	1	13	$11-1{ }^{13}$		$\left(\mathrm{CH}_{8} \mathrm{H}_{7} \mathrm{O} \cdot 11 \mathrm{l}\right.$ ］	20.15	20.10	3.34	263	2712	$2 \bar{i} \cdot \underline{3}$			$r:$
8．	（］1	（ 11	－1	11°	250－061	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{5} \mathrm{~N}_{6} \mathrm{O} \cdot \mathrm{HCl}$	25.24	2in ${ }^{\text {a }}$	$21 \bar{i}$	－91	29， 43	29） 17			O
83	110	（ 1	6.	H＊	>300	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{6} \mathrm{O}$	26.98	2－\square^{-}	$\therefore 02$	2．198	31.77	31.25			1.
84	（ 11180	（ 1	リ）	11^{1}	$\underline{3}$	（ $11 \mathrm{HClN} \mathrm{C}_{6} \mathrm{O} \cdot \mathrm{HCl}$	29.91	30.18	38	：，il	29） 90	－19．91	20．2：	25． 10	！
8.5	Cer150	Cl	81	$11 . \mathrm{N}$	21：7－2 ${ }^{\text {2 }}$（ ${ }^{\text {a }}$	（\％11， $\mathrm{Cl}^{(1)} \mathrm{N}_{6} \mathrm{O}$	37.15	3 Ci 46	（． 29	1．31	32.15	32．12	1：3．71	1：7！	0
86	11s	（ 1	100	11－5	2366	$\left({ }_{6} \mathrm{H} \cdot \mathrm{ClS}_{6} \mathrm{OS}\right.$	2！）！1	$\underline{29} 38$	$\underline{2} .8 t$		：4．07	312	14.8	1－16	）
87	CHs	（ 1	100	11.4	234 －－236．i）	C $\mathrm{H}_{4} \mathrm{ClN} \mathrm{N}_{6} \mathrm{~S}$	32．25	32．85）	$\therefore 18$	： $1=$	12．24	31.82	13．60	1：3．72	＋ 1
88	11．N	11	9	$11-N$	200． $5-203.5$ dee	$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}: \mathrm{O}$	36.92	36.9	146	$1+2$	3） 24	4！）． 8			11
$8!$	（ C 1 Ha ） N	H	4）	1－－W	$\underline{2} 4-20$ d lee	（ $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{7} \mathrm{O}$	43.04	4.7 .18	5． 87	\％．-1	13.93	43． 633			：
190		II	75	$1^{\prime}-1{ }^{\text {a }}$	约1－233 des		48.50	48.68	i． 01	－ 01	30.17	：30． 18	．		：
$1 \cdot 1$	110	11	10	W＇	＞110	（ $6118 \mathrm{~N}_{6} \mathrm{O} \cdot \mathrm{H}$ 11（11	30.98	3107	\therefore ：！（ ）	B． 8^{-}	（i）1：1	35． 3 O	．		1
！ $1 \times$	（11．0）	11	51	W		（ $\because 111 \mathrm{~N} \mathrm{~N}_{5} \mathrm{O}: 11 \mathrm{Cl}$	A－1．08	31.019	$14 ?$	1．71	$\therefore \mathrm{A} 08$	3.380	\cdots		－ 1

 （a）lomble III．

Tiblei 11

Sulsiturut	Yiclu,	$110.6{ }^{6} \mathrm{C}$	Jecrystı solvent	lourtulis	－Nitumen，	
					Calm	Fimuld
o－（ Dhorohenzyl	71	1：3－136	AcOE：	$\left(\therefore \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{4}\right.$	19.09	19， 01
p－Merhoxyben\％	（6）	［：2－－1：3	Eto H	$\left(\mathrm{CH}_{4} \mathrm{CHN}_{4}\right)$	10．48	19） 20
p－Merhylbenzyl	\cdots	153－159	－l＇roh	$\mathrm{COH}_{44} \mathrm{ClN}_{3}$	$\underline{-1.04}$	－ 0.95
$\chi_{\text {c－M }}$ Ie hyybenay	$\because 2$		Surecrysin	$\cdots \mathrm{H}_{15} \mathrm{CHN}$	$\underline{21.04}$	\cdots
－ 4 －－$)$ ine（hylbenky	－1	10 $0-115$	Eto $\mathrm{H}-\mathrm{El}_{1} \mathrm{O}$	$\left({ }_{1 . .} \mathrm{H}_{66} \mathrm{CLN}\right.$	19． 66	1！ 17
［－Naphthylme byr	i；	1ヵS．$\overline{-195}$	No recressin	CliH14 Cl_{4}	17．${ }^{\text {a }}$	17． $\mathrm{l}_{\text {（i }}$
：3－Pyridyhnethel	S 6		Nurecrestu	（ $\mathrm{HH}_{11} \mathrm{Cl} \mathrm{Cl}_{6}$	30.10	2！ 10
1－Benzyl－methyl	；${ }^{2}$	［22， $5-125.5$	W0H－AcOLl	$\left(\mathrm{H}_{1} \mathrm{Cl} \mathrm{Na}_{6}\right.$	21.04	20.85

 was prepared using a procedure similar（1）that deseribed above wherein the appropriate amine wats substituted for dimethyl－ ：mine．

4．Methyl 3－Amino－5－（ p－chloroanilino）－6－chloropyrazine－

carboxylate（Id－44）．－Erider anhydrous conditions，Ib（11．1g， （0．0． $\mathbf{0}$ mole），p－chloroaniline（ $10.7 \mathrm{~g}, 0.15 \overline{\mathrm{~B}}$ mole），p－chloroaniline lydrochloride（ 17.9 g ， 0.11 nule），：nd 2 －propanol（ 500 mI ） were stirred and refluxed for 24 hr ．The prodnct which separ：ued ponn cooting was removed by filtration ：und dried：yield 13.9 g （ 896 ）．Purfication was effected by recrustallization from acen－ nitrile．

Ling aniline and aniline hydrochloride for p－chloroaniline ：und p－chloroaniline hydrochloride in，the above procedure gave a 71．y yield of Id－43．

5．Methyl 3－amino－5－（1－methyl－2－benzylidenehydrazino）－6－ chloropyrazinecarboxylate（Id－48）wis prepared for the structure proof of Id－47．Compound Id－47（ 100 mg ）was dissolved in warm ethanol（ 2 nil），benzaldehyde（ 2 drops）was added，and the solution was cooled．The crystals that separated were removed by filtiation，washed with water，and dried．

C．Methyl 3－Amino－5－（and 5，6－di－）substituted Pyrazine－ carboxylates（Table II）．1．Methyl 3－Amino－5－methylthio－6－ chloropyrazinecarboxylate（Ic－1）．－A solution of methyl mercerl）－ （：4n（ $10 \mathrm{~g}, 0.18$ mole）in 20 F aqueons $\mathrm{NaOH}(17 \mathrm{ml})$ and meth－ ：anol（ 100 ml ）was added during 10 min to a boiling mixture of $1 \mathrm{~h})(17.7 \mathrm{~g}, 0.0 \mathrm{~m}$ mole）and methanol（11．）．The mixture was reflosed for an additional 15 min and cooled，and the prodnct （ 12 g ）w：ts separated by filtration，dried，and recrys（allized．

2．Methyl 3－Amino－5－methoxy－6－chloropyrazinecarboxylate （Ic－2）－A boiling solution of $\operatorname{Ib}\left(1.1 \mathrm{~g}, 0.00 \mathrm{~B}_{3}^{3}\right.$ nole）in anhydrous methanol（ 200 ml ）was treated with a solution of sodium meth－ oxide prepared from Na （ $11.5 \mathrm{ng}, 0.00 \cdot 5 \mathrm{~g}$－at（om）it anhydrols methand（ 20 ml ）．The product（ 1 g ）which separated inpos （ouling was removed by filtration，washed with water and then methanol，and finally dried and recrosalized．

3．Ethyl 3－Amino－5－ethoxy－6－chloropyrazinecarboxylate （Ic－3）．．．－A boiling solution of Ib（ 2.2 g． 0.01 mole）in ：bsitutc （ilh：und $(200 \mathrm{ml})$ was treated with a Na$)\left(\mathrm{C}_{4} \mathrm{H}_{5}\right.$ sohtion prepared
 1ure whe reflned for 15 min and then concentrated at reduced pressire to 30 ml ．Witter（3）mil）wat ：added ：und the prodict that separated w：is removed by filtration and recrystallized．

4．Methyl 3－Amino－5－phenoxy－6－chloropyrazinecarboxylate （Ic－4）．－－Phenol（ 15 g， 0.16 mole）was melted and treatel with 10． NaOH （0．5 mit， 0.025 mole）， 1 hen Ib（ $4.4 \mathrm{~g}, 0.02 \mathrm{O}$ mole）was added，and the mixine was heated on a sleam bath for 15 min． After cooling，the product which separated was renoved by filtration，washed with water，dried，and recrystallized．

5．Methyl 3－Amino－5－（2－dimethylaminoethoxy）－6－chloro－ pyrazinecarboxylate（Ic－5）－－A solution of Ib（ $11.1 \mathrm{~g}, 0.05$ mole） in 2 －dimethylaninuethanol（ 6.5 ml ）wis heated on a seam b：（b） Cor 3 minn．After cooling overnight，the soltuion was dihntod with water，mod the product which separated was removed by filt rat ion，waned with water，dried，and recrystallized．

6．Methyl 3－Amino－5－mercapto－6－chloropyrazinoate（Ic－6）． A misture of sodium sulfide nonahydrate（ $9.6 \mathrm{~g}, 0.4$ nole），sulfur $(10 \mathrm{~g})$ ，and absolute ethanol（ 80 ml ）was refluxed for 30 min ： 11 d cooled to 25° ．After the addition of $\operatorname{Ib}(8.9 \mathrm{~g}, 0.04$ mole），the solution w：ts stirred at 25° for $\mathbf{1 ~ h r}$ ，filtered，：und ：acidified with aceric acid．The product that separated was removed ly filtration and porified by disolving in NaOH solution and 1 we－ cipitating with acetic acid．

7．Methyl 3－Amino－5－methylsulfinyl－6－chloropyrazinecar－ boxylate（ $\mathrm{Ie}-1$ ）－A mixture of $\mathrm{I}-1(23.4 \mathrm{~g}, 0.1$ mole $)$ ， 30 ．
 hr at room temperature．The solid then was removed by filtrit－ ion，washed with acetic acid，dried，：und recrystallized．

8．Methyl 3－Amino－5－mesyl－6－chloropyrazinecarboxylate （Ie－2）－－－A suspension of $\operatorname{Ic}-1(\overline{7} .0 \mathrm{~g}, 0.013$ nole）in aceetic acid
 （emperatore．After 69 hir，more 30$)_{6}$ IL：Os（ 2 ml ）wats added， ：und stirring wats embinned for a 10 alal reaction tinue of 160 hr． The solid was removed filtration，washed with acelic acid， dried，whed rearystallized．

9．Methyl 3－Amino－5－hydroxy－6－chloropyrazinoate（If）A

ually crystallized from the reaction mixture during the heating period and continued after cooling. This material was separated by filtration, dried, and recrystallized.

Attempts to convert Ib to If by heating with NaOH solutions led to the formation of Va or Vb depending upon the reaction conditions. Esterification of $\backslash \mathrm{b}$ to If was unsuccessful.
10. 3-Amino-5,6-dichloropyrazinecarboxylic Acid (Va).Compomid Ib ($1.8 \mathrm{~g}, 0.0081$ mole) was refluxed with a solution of $\mathrm{NaOH}(649 \mathrm{mg}, 0.324 \mathrm{~mole}$) in water (120 ml) for 10 min. The hot solution was filtered and acidified with HCl to give 1.5 g (91%) of $\mathrm{Ca}, \mathrm{mp} 228.5^{\circ}$ dec.

Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $28.87 ; \mathrm{H}, 1.44 ; \mathrm{Cl}, 34.09$. Fonnd: $\mathrm{C}, 29.30$; $\mathrm{H}, 1.65 ; \mathrm{Cl}, 33.44$.
11. 3-A mino-5-hydroxy -6-chloropyrazinecarboxylic Acid (Vb). -A mixture of $\mathrm{Ib}(4.0 \mathrm{~g}, 0.018$ mole) and $5 \% \mathrm{NaOH}$ solation ($5.5 \mathrm{ml}, 0.6 .88$ mole) was stirred and heated on a steam bath for 2.5 hr . The resulting sohtion was cooled and acidified with HCl . The precipitate was removed by filtration, washed with water, dried, and recrystallized twice from acqueous ethanol to give $400 \mathrm{mg}(12 \%)$ of $\mathrm{Vb}, \operatorname{mp} 210^{\circ}$ dec.

Inal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{ClN}_{3} \mathrm{O}_{3}: ~ \mathrm{C}, 31.68 ; \mathrm{H}, 2.1 \% ; \mathrm{N}, 22.17$. Found: C, $31.64 ; \mathrm{H}, 2.22 ; \mathrm{N}, 22.27$.
12. Methyl 3,5-Diaminopyrazinecarboxylate (Ig-1).-A mixture of Id-1 ($14.2 \mathrm{~g}, 0.07$ mole), $57_{C} \mathrm{Pd}-\mathrm{C}$ catalyst (9 g$)$, Ng g) $(4.0 \mathrm{~g}, 0.1$ mole), and methanol (250 ml) was shaken in an at mosphere of hydrogen for 18 hr at room temperature at an initial pressure of $2.1 \mathrm{~kg} / \mathrm{cm}^{2}$. The pressure drop indicated an absorption of 0.07 mole of hydrogen. The mixture was filtered, and the solids were extracted with a boiling solution of 2-propanol (000 ml) and water (250 ml). The methanol filtrate and the 2-propanol-water extract were united and concentrated to a volume of 100 ml and cooled. The product which precipitated weighed $10 \mathrm{~g}(85 \%)$ and was purified by recrystallization.

Four other esters, $\operatorname{Ig}-2,3,4,5$, were prepared by a procedure similar to Ig-1 above, wherein the appropriate ester was substituted for Id-1; the data are recorded in Table II.
13. Methyl 3,5-Diamino-6-bromopyrazinecarboxylate (Ih-1). - A solution of bromine ($2.1 \mathrm{~g}, 0.013$ mole) in acetic acid (10 ml) was added to a suspension of $\operatorname{Ig}-1(2.0 \mathrm{~g}, 0.012$ mole) in acetic acid (25 ml) at 50°. The mixture was stirred for 10 min at room temperature and the crystalline product that separated was collected on a filter. After recrystallization, the yield was $1.2 \mathrm{~g}\left(41 c_{c}\right)$.
14. Methyl 3,5-Diamino-6-iodopyrazinecarboxylate (Ih-2)A suspension of $\mathrm{Ig}-1(1.7 \mathrm{~g} ., 0.01 \mathrm{~mole}$) in water (30 ml) was heated to 70°, then mercuric acetate ($3.2 \mathrm{~g}, 0.01 \mathrm{~mole}$) and a solution of iodine ($2.5 \mathrm{~g}, 0.01$ mole) in warm dioxane (20 ml) were added quickly. The mixture was stirred and heated on a steam bath for 5 min , then allowed to cool to room temperature and treated with an aqueous solution of $\mathrm{KI}(50) \mathrm{ml}$ containing 7.5 g of KI). The red solution quickly deposited a crystalline product which was separated by filtration, dried, and recrystallized.
D. N-Amidino-3-amino-5-substituted Pyrazinecarboxamides. Route a. 1. N-Amidino-3-amino-5-dimethylamino-6-chloropyrazinecarboxamide ($\mathrm{Ia}-14$).-Under anhydrous conditions, N_{a} $(5.75 \mathrm{~g}, 0.25 \mathrm{~g}$-atom) was dissolved in dry methanol (150 ml) and
the resulting solution was treated with dry guanidine hydrochloride ($26.3 \mathrm{~g}, 0.275$ mole) and stirred for 10 min . The NaCl which formed was removed by filtration under anhydrons conditions and the filtrate was concentrated in vacuo to 30 ml . The residue was treated with Id-14 ($11.5 \mathrm{~g}, 0.05$ mole), heated for 1 min on a steam bath, and then kept at room temperature for 1 hr . The product that separated was removed by filtration and washed well with water. This material was suspended in water dissolved by the addition of a little HCl and precipitated by the addition of dilute NaOH solution. After filtration and washing with water, the product was dried; $\operatorname{mp} 216-217^{\circ}$.

By substituting the appropriate ester for Id-14 and the desired guanidine hydrochloride for guanidine hydrochloride itself, the above method was used for the syithesis of each of the compounds which appear in Tables III- V^{-}. With methylguanidine and dimethylguanidine, the sulfate salts were used instead of the hydrochlorides. These required heating with sodinm methoxide in methanol for 45 min to assure complete conversion to the free guanidine. In some cases it was convenient to isolate the products as the hydrochloride salts using a procedure analogous (1) the following one.
2. N-Amidino-3-amino-5-dimethylamino-6-chloropyrazinecarboxamide Hydrochloride-A suspension of IIa-14 (2.0 g, 0.0775 mole) in water (70 ml) was treated with sufficient HCl to effect solution. After filtration, concentrated $\mathrm{HCl}(5 \mathrm{ml})$ was added to the filtrate and the crystalline product which separated was removed by filtration and dried, yield 2.2 g (976). Re(rystallization from a mixture of water (50 ml) and concentrated $\mathrm{HCl}(3 \mathrm{ml})$ gave pure material, mp 298° dec.

Anal. Caled for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{Cl}_{4} \mathrm{~N}, \mathrm{O}: ~ \mathrm{C}, 32.66 ; \mathrm{H}, 4.45 ; ~ N, 33.33:$ $\mathrm{Cl}, 24.11$. Found: C, 33.03; H, $4.43 ; \mathrm{N}, 33.10: \mathrm{Cl}, 23.80$.

Route b. Step 1. N-Amidino-3-amino-5,6-dichloropyrazinecarboxamide Hydrochloride (IIc-82).—Sodium (920 mg, 0.04 g-atom) was dissolved in 2-propanol (50 ml) under anhydrous conditions, guanidine hydrochloride was added (3.85 g, 0.04 mole) and, after stirring for 30 min, the mixture was filtered. To the filtrate was added $\mathrm{Ib}(4.44 \mathrm{~g}, 0.02$ mole $)$, and the mixture was refluxed for 15 min and then cooled to 10°. The solid that separated was removed by filtration, dried, and recrystallized from a mixture of water (50 ml) and $6.1 \mathrm{HCl}(3 \mathrm{ml})$.

Step 2. N-Amidino-3-amino-5-dimethylamino-6-chloro-pyrazinecarboxamide.-To a solution of IIc-82 (100 mg) in DMF ($\overline{5} \mathrm{ml}$) was added $2 \overline{5} \%$ aqueous dimethylamine (1 ml). The mixture was heated for 1 hr on a steam bath and then diluted with water $(25 \mathrm{ml})$. The product that separated was removed by filtration and purified by reprecipitation; mp 216-217 ${ }^{\circ}$.
3. N-Amidino-3-amino-5-guanidino-6-chloropyrazinecarbox-
 propanol was prepared by dissolving sodium ($2.3 \mathrm{~g}, 0.1 \mathrm{~g}$-atom) in 2-propanol ($8(\mathrm{iml}$) and adding guanidine hydrochloride (0.6 g , 0.1 mole). Compound Ic-5 ($4.7 \mathrm{~g}, 0.017$ mole) was added and the mixture was refluxed for 30 min. After cooling in ice, the product was separated by filtration and converted to the hydrochloride by recrystallization from dilute HCl . Sinnilar resnlts were obtained when Ic-5 was replaced by Ic-4.

[^0]: (1) Haper 1 in this series: J. B. Bitking, J. W. Masuth, O. W. Whi..rstlorf,
 frhem., 8, (2:38 (1965).

[^1]: retien values.
 repurted liere.
 (11) Dr. W. H. Jones in responsible fur ibis preparalion.
 (1.5) M. S. Ransh, J. Org. Chem. 27, 140f (1962).

 n96:3).

 1/12. C/L:M., 6, י275 (196:3).

